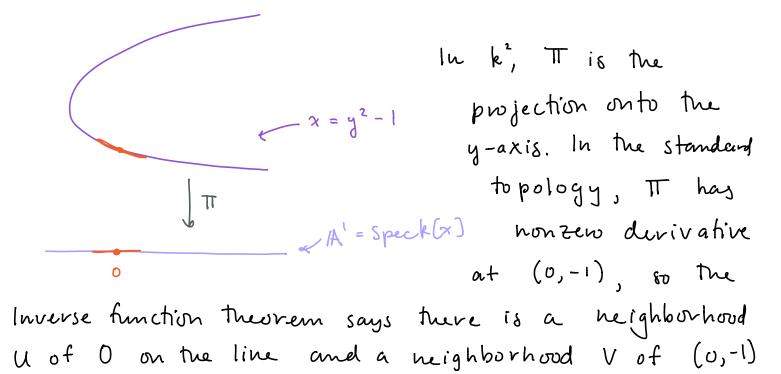
Completions

Idea: If R is a ring, PER prime, the localization tells us about <u>Zavis</u>ki open neighborhoods of P. The "completion" Rp tells us about smaller "neighborhoods". In the (I-algebra case, it tells us about neighborhoods in The "classical" topology.

We will see that if $R = k[x_1, ..., x_n]$, $m = (x_1, ..., x_n)$, then $\hat{R}_m = k[[x_1, ..., x_n]]$, the formal power series ring, and

$$\left(\begin{array}{c} R \\ T \end{array} \right)_{\mathcal{M}} = \begin{array}{c} k \left[x_{1}, \dots, x_{n} \right] \\ I k \left[x_{1}, \dots, x_{n} \right] \end{array}$$

k[x] ~ R induces the map on spec:



s.t. there is an (analytic) inverse $U \rightarrow V_{j}$ defined $\chi \longmapsto (\chi, -\sqrt{\chi + 1})$

There is no algebraic inverse since the y-coordinate would have to be a square not of x+1.

However, the power series expansion

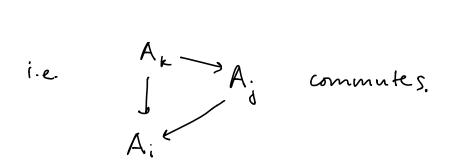
$$-\sqrt{\chi+1} = -1 - \frac{\chi}{2} + \frac{\chi^2}{g} - \dots$$

converges for 1x1<1, so we have an inverse at the level of power series!

we'll see that the above holds in a more general setting. First, we need the following construction.

Def: An <u>inverse system</u> is a collection of groups $\{A_i\}_{i \in J}$ with J partially ordered s.t. if $i \leq j$, \exists a homomorphism $Y_{ij} : A_j \rightarrow A_i$; with the following properties:

2)
$$\Psi_{ik} = \Psi_{ij} \circ \Psi_{jk} \quad \forall i \leq j \leq k$$



The inverse limit of the inverse system is

$$\lim_{i \to \infty} A_i = \begin{cases} \vec{a} \in \prod_{i \in J} A_i & | a_i \mapsto a_i & \forall i \leq j & \text{in } J \end{cases}$$
let R be a ring and $I \subseteq R$ on ideal.
Then $\begin{cases} R'_{I}i \end{cases}_{i \in R_{+}}^{i}$ is an inverse system, with

$$\mathcal{Y}_{ij}: \stackrel{\mathsf{R}}{\underset{\mathsf{I}}{}_{ij}} \xrightarrow{\mathsf{R}} \underset{\mathsf{I}}{\overset{\mathsf{r}}{}_{j}} \xrightarrow{\mathsf{R}} \underset{\mathsf{I}}{\overset{\mathsf{r}}{}_{ij}}$$

Def: The completion of
$$R$$
 w.r.t. I is $\widehat{R}_{I,j}$ defined
 $\widehat{R}_{I} := \lim_{k \to \infty} \frac{R_{I}}{I} = \begin{cases} g = (g_{1,j}, g_{2,...}) \in \prod_{i=1}^{R} \frac{R_{I}}{I} & g_{i} \in g_{i} \pmod{I^{i}}, j > i \end{cases}$

RI is a ring with coordinate-wise addition and multiplication.

For each i, define

$$\begin{aligned}
\widehat{T}_{i} &:= \left\{ g = (g_{1}, g_{2}, ...) \in \widehat{R}_{I} \middle| g_{j} = 0 \quad \text{for } j \leq i \right\}. \\
\\
\text{In } \widehat{R}, \text{ two elements are equivalent mod } \widehat{T}_{i}, \text{ say} \\
&\quad (f_{i}, f_{2}, ...) \equiv (g_{i}, g_{2}, ...) \mod \widehat{T}_{i} \\
\end{aligned}$$

$$\begin{aligned}
\longleftrightarrow \quad f_{j} = g_{j} \quad \forall \quad j \leq i. \quad \longleftrightarrow \quad f_{i} = g_{i}.
\end{aligned}$$

That is, we have a hatural isomorphism

 $\hat{R}_{\hat{I}_i} \cong R_{\hat{I}_i}$, which is just the projection onto the it coordinate.

If
$$m \subseteq R$$
 is maximal, then $\widehat{R}_{m,n} \cong \widehat{R}_{m,n}$, a field,
so \widehat{m}_{1} is maximal.

Moreover, if
$$g_i = (g_1, g_2, ...) \in \widehat{R}_m$$
, but not in \widehat{m}_i , then $g_i \neq 0$. Thus, each $g_i \notin \mathcal{M}_m : \subseteq \widehat{R}_m$.

$$m'_{mi}$$
 is the only maximal ideal of m , so g_i is a
unit. Since $g_j \equiv g_i \pmod{m^i}$, it follows that
 $g_j^{-1} \equiv g_i^{-1} \pmod{m^i}$, so
 $h \equiv (g_i^{-1}, g_2^{-1}, \dots) \in \widehat{R}_m$

is the inverse of g, so g is a unit. Thus, \hat{R}_m is local, w/ max'l ideal \hat{m}_1 .

Note:
$$R_{mi} = (R_{mi})_{m} = R_{mmin}$$
, so we get the
same completion if we first localize at m.

EX:
$$R = S[x_1, ..., x_n], m = (x_1, ..., x_n).$$
 We want to show
that $\widehat{R}_m \cong S[[x_1, ..., x_n]].$

Note that
$$S[[x_1, ..., x_n]]$$
 $m^i S[[x_1, ..., x_n]] = R_m^i$

So we have a natural map

$$S[[x_1, \dots, x_n]] \longrightarrow \widehat{R}_m$$

$$f \longmapsto (f + m, f + m^2, \dots).$$

In the other direction, if $(f_1 + m, f_2 + m^2, ...) \in \mathbb{R}_m$, where for i > j, $f_i - f_j = terms of degree > j$, then send

Thus, the coefficient of each monomial is a finite sum, so this is a formal power series. It's straightforward to check that the map is well-defined (i.e. independent of choices of fi.), and is the inverse of the above map, so $\hat{R}_m = S[[x_1,...,x_n]].$

e.g.
$$(1, 1+2x, 1+2x-3x^2, 1+2x-3x^2+x^3, ...)$$

 $\longmapsto 1+2x-3x^2+x^3+...$

Another standard example comes from number theory:

Ex: let
$$p \in \mathbb{R}$$
 be prime. The ring $\widehat{\mathcal{R}}_{(p)}$, written \mathbb{Z}_{p} , is the ring of p-adic integers.

let
$$(a_1 + (p), a_2 + (p^2), \dots) \in \mathbb{Z}_p$$
 where $0 \le a_i < p^i$.

Thus for each i,
$$a_{i+1} \equiv a_i \pmod{p^i}$$
, so
 $a^{i+1} - a^i \equiv b_i p^i$, $b_i < p$

and we write this as a power series, called a <u>p-adic</u> expansion:

$$a_1 + b_1 p + b_2 p^2 + \dots$$

so that the partial sums give the sequence:

a₁
a₁ + b₁p = a₁ + (a₂ - a₁) = a₂
a₂ + b₂p² = a₂ + (a₃ - a₂) = a₃, etc.

$$\frac{7}{(p^{i})}$$
 has torsion, so addition of power series works
a little differently. For example, in $\frac{7}{2}$,
 $(i, i, i, q, q, ...) + (1, i, i,) = (0, 2, 2, 10, 10, ...)$
mult $i \uparrow \uparrow \uparrow \uparrow$
mult $i \uparrow \uparrow \uparrow$
and the corresponding power series expansions are
 $(1 + 0 \cdot 2^{2} + 0 \cdot 2^{4} + 1 \cdot 2^{3}) + (1) = (0 + 1 \cdot 2 + 0 \cdot 2^{4} + 1 \cdot 2^{3})$
so addition is not term by term! Instead, we have to

"Carry"

e.g. in
$$\pi_3$$
, we have
 $(1+2\cdot 3+2\cdot 3^2) + (1+2\cdot 3+1\cdot 3^2) = 2+4\cdot 3+3\cdot 3^2$
 $= 2+1\cdot 3+1\cdot 3^2+1\cdot 3^2$
Note that $\pi \hookrightarrow \pi_p$ naturally, since for $r > 0$, $r < p^a$
for some a, so $r \pmod{p^a} \neq 0$. i.e. the kernel is 0.
e.g. in π_2 , $1 = (1, 1, 1, ...)$, and the element
 $(1, 2^{2}-1, 2^{3}-1, 2^{4}-1, ...)$ has corresponding power
series $1+2+2^{2}+...$
 $(1, 1, 1, ...) + (1, 2^{2}-1, 2^{3}-1, ...) = 0$, so $1+2+4+... = -1$.
Note that $\pi \notin \pi_p$: Any p-adic expansion
 $a_0 + a_1p + a_2p^2 +...$ $w/ 0 \le a_1 < p$ corresponds to the
element
 $(a_0, a_0 + a_1p, a_0 + a_1p + a_2p^2, ...) \in \pi_p$,

so this gives a bijection between p-adic expansions and Rp. In particular, Rp is uncountable!

Properties of completion

Def: If R 18 a ring, IER on ideal, then if the

natural map $R \rightarrow \hat{R}_{I}$ is an isomorphism, we say R is complete with respect to I. When I is maximal, we say R is a complete local ring.

Note:
$$\bigcap I^{\dot{d}} \rightarrow 0$$
 in \widehat{R}_{I} , so if R is complete wirt.
I, then $\bigcap I^{\dot{d}} = 0$.

Let ICR an ideal, and denote
$$\hat{R} = \hat{R}_{I}$$
. We have
a natural map $\hat{R} \rightarrow \frac{R}{I^{n}}$
 $(f_{i}, f_{2}, ...}) \mapsto f_{n}$

Note: The elements of $I^{n}\hat{R}$ are generated by elements of the form $(ar_{1}, ar_{2}, ...)$ where $a \in I^{n}$ and $(r_{1}, ...) \in \hat{R}$.

In particular,
$$a_{i} \in \underline{T}^{n}$$
, so it's 0 for $i \leq n$.
 $\implies \underline{T}^{n} \hat{R} \subseteq \widehat{T}_{n}$. (This is an equality if R is
Noetherian, but in general, they may be different.)

However, we can always say the following about
$$\hat{R}$$
:
Claim: \hat{R} is complete w.r.t. the filtration $\hat{I}_1 = \hat{I}_2 = \dots$.
That is, $\hat{R} = \lim_{n \to \infty} \hat{R} / \hat{I}_n$.

$$\frac{PF}{R} = \lim_{n \to \infty} \frac{R}{I} = \lim_{n \to \infty} \frac{R$$

In the Noetherian case, we get the following:

Cauchy sequences

Note that in the cases we've looked at, \hat{R} can be thought of as "limits" of sequences in R:

$$\begin{array}{c} \underline{\mathsf{F}}\mathbf{x} : \quad \mathsf{In} \quad \mathsf{R}[\mathbf{x}], \quad \mathsf{In} \quad \mathsf{sequence} \quad a_0, \quad a_0 + a_1 x_1, \quad a_0 + a_1 x_1 + a_2 x_2^2, \dots \\ \\ \begin{array}{c} \mathsf{`converges''} \quad \mathsf{to} \quad \sum a_i x^i \in \mathsf{R}[[x]] = \widehat{\mathsf{R}}. \end{array} \end{array}$$

EX: In
$$\mathbb{R}_2$$
, $\frac{1}{3}$, $1+2$, $1+2+2^2$, ... converges to
 $\frac{1}{3}$, $\frac{3}{7}$
 $1+2+2^2+... = -1$.

This motivates a different characterization of completion.

Def:
$$(r_n) \in \mathbb{R}^{\mathbb{N}}$$
 is Cauchy for the I-adic topology
if \forall tells, there is $d \in \mathbb{N}$ s.t. When $m, n \ge d$, we
have $r_n - r_m \in \mathbb{I}^{t}$. It converges to 0 if \forall n, \exists m
s.t. for all $i \ge m$, $r_i \in \mathbb{I}^{n}$.

Two cauchy sequences
$$(r_n), (s_n)$$
 are equivalent if $(r_n - s_n)$ converges to 0.

Check: Equivalence classes of Cauchy sequences form a ring, we'll call it C for now.

Note that any sequence
$$(a_n)$$
 that is the lift of
an elt of \hat{R} is a cauchy sequence: If $m \ge n$, then
 $a_m \equiv a_n \pmod{\mathbb{I}^n}$, so $a_m - a_n \in \mathbb{I}^n$.

Conversely, let
$$(r_n)$$
 be a (auchy sequence and fix t.
Then for some d , and any $m, n \ge d$, $r_n - r_m \in \mathbb{T}^t$.
Thus, $r_n \equiv r_m \mod \mathbb{I}^t$. If (r_n) converges to O , then
 $\forall n >> O$, $r_n \in \mathbb{I}^t$. Thus, we get a map for each t

 $C \longrightarrow R'_{It}$ scholing $(r_n) \mapsto \overline{r_n}$ for m >>0. Moreover, for any t'st, the map corresponding to t' is just the composition

$$C \rightarrow R_{It} \rightarrow R_{It'}$$

<u>Claim</u>: If C is the ring of equivalence classes of Cauchy sequences, then there is a natural isomorphism $Y: C \longrightarrow \hat{R}_{I}$

given by the product of the above maps.

Pf: First note that the image of a Cauchy sequence is in \hat{R}_{I} : If $(s_{n}) \mapsto (\bar{a}_{1}, \bar{a}_{2}, ...)$, then by the above discussion, \bar{a}_{t} , is the image of \bar{a}_{t} in the quotient, for $t' \leq t$.

It is well-defined since any Cauchy sequence converging to O gets sent to O.

The map is an isomorphism since, as we described, the lift of any sequence in \hat{R} is a Cauchy sequence, so we have a natural inverse. \Box